107 research outputs found

    Analysis of the economic impact of large-scale deployment of biomass resources for energy and materials in the Netherlands : macro-economics biobased synthesis report

    Get PDF
    The Bio-based Raw Materials Platform (PGG), part of the Energy Transition in The Netherlands, commissioned the Agricultural Economics Research Institute (LEI) and the Copernicus Institute of Utrecht University to conduct research on the macro-economic impact of large scale deployment of biomass for energy and materials in the Netherlands. Two model approaches were applied based on a consistent set of scenario assumptions: a bottom-up study including technoeconomic projections of fossil and bio-based conversion technologies and a topdown study including macro-economic modelling of (global) trade of biomass and fossil resources. The results of the top-down and bottom-up modelling work are reported separately. The results of the synthesis of the modelling work are presented in this report

    How Low Can We Go? The Implications of Delayed Ratcheting and Negative Emissions Technologies on Achieving Well Below 2 °C

    Get PDF
    Pledges embodied in the nationally determined contributions (NDCs) represent an interim step from a global “no policy” path towards an optimal long-term global mitigation path. However, the goals of the Paris Agreement highlight that current pledges are insufficient. It is, therefore, necessary to ratchet-up parties’ future mitigation pledges in the near-term. The ambitious goals of remaining well below 2 °C and pursuing reductions towards 1.5 °C mean that any delay in ratcheting-up commitments could be extremely costly or may even make the targets unachievable. In this chapter, we consider the impacts of delaying ratcheting until 2030 on global emissions trajectories towards 2 °C and 1.5 °C, and the role of offsets via negative emissions technologies (NETs). The analysis suggests that delaying action makes pursuing the 1.5 °C goal especially difficult without extremely high levels of negative emissions technologies (NETs), such as carbon capture and storage combined with bioenergy (BECCS). Depending on the availability of biomass, other NETs beyond BECCS will be required. Policymakers must also realise that the outlook for fossil fuels are closely linked to the prospects for NETs. If NETs cannot be scaled, the levels of fossil fuels suggested in this analysis are not compatible with the Paris Agreement goals i.e. there are risks of lock-in to a high fossil future. Decision makers must, therefore, comprehend fully the risks of different strategies

    A Natural Human Retrovirus Efficiently Complements Vectors Based on Murine Leukemia Virus

    Get PDF
    Background: Murine Leukemia Virus (MLV) is a rodent gammaretrovirus that serves as the backbone for common gene delivery tools designed for experimental and therapeutic applications. Recently, an infectious gammaretrovirus designated XMRV has been identified in prostate cancer patients. The similarity between the MLV and XMRV genomes suggests a possibility that the two viruses may interact when present in the same cell. Methodology/Principal Findings: We tested the ability of XMRV to complement replication-deficient MLV vectors upon coinfection of cultured human cells. We observed that XMRV can facilitate the spread of these vectors from infected to uninfected cells. This functional complementation occurred without any gross rearrangements in the vector structure, and the co-infected cells produced as many as 10 4 infectious vector particles per milliliter of culture medium. Conclusions/Significance: The possibility of encountering a helper virus when delivering MLV-based vectors to human cells in vitro and in vivo needs to be considered to ensure the safety of such procedures

    Setting priorities for land management to mitigate climate change

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>No consensus has been reached how to measure the effectiveness of climate change mitigation in the land-use sector and how to prioritize land use accordingly. We used the long-term cumulative and average sectorial C stocks in biomass, soil and products, C stock changes, the substitution of fossil energy and of energy-intensive products, and net present value (NPV) as evaluation criteria for the effectiveness of a hectare of productive land to mitigate climate change and produce economic returns. We evaluated land management options using real-life data of Thuringia, a region representative for central-western European conditions, and input from life cycle assessment, with a carbon-tracking model. We focused on solid biomass use for energy production.</p> <p>Results</p> <p>In forestry, the traditional timber production was most economically viable and most climate-friendly due to an assumed recycling rate of 80% of wood products for bioenergy. Intensification towards "pure bioenergy production" would reduce the average sectorial C stocks and the C substitution and would turn NPV negative. In the forest conservation (non-use) option, the sectorial C stocks increased by 52% against timber production, which was not compensated by foregone wood products and C substitution. Among the cropland options wheat for food with straw use for energy, whole cereals for energy, and short rotation coppice for bioenergy the latter was most climate-friendly. However, specific subsidies or incentives for perennials would be needed to favour this option.</p> <p>Conclusions</p> <p>When using the harvested products as materials prior to energy use there is no climate argument to support intensification by switching from sawn-wood timber production towards energy-wood in forestry systems. A legal framework would be needed to ensure that harvested products are first used for raw materials prior to energy use. Only an effective recycling of biomaterials frees land for long-term sustained C sequestration by conservation. Reuse cascades avoid additional emissions from shifting production or intensification.</p

    Genome-culture coevolution promotes rapid divergence of killer whale ecotypes.

    Get PDF
    Analysing population genomic data from killer whale ecotypes, which we estimate have globally radiated within less than 250,000 years, we show that genetic structuring including the segregation of potentially functional alleles is associated with socially inherited ecological niche. Reconstruction of ancestral demographic history revealed bottlenecks during founder events, likely promoting ecological divergence and genetic drift resulting in a wide range of genome-wide differentiation between pairs of allopatric and sympatric ecotypes. Functional enrichment analyses provided evidence for regional genomic divergence associated with habitat, dietary preferences and post-zygotic reproductive isolation. Our findings are consistent with expansion of small founder groups into novel niches by an initial plastic behavioural response, perpetuated by social learning imposing an altered natural selection regime. The study constitutes an important step towards an understanding of the complex interaction between demographic history, culture, ecological adaptation and evolution at the genomic level

    Killer whale genomes reveal a complex history of recurrent admixture and vicariance

    Get PDF
    Reconstruction of the demographic and evolutionary history of populations assuming a consensus tree‐like relationship can mask more complex scenarios, which are prevalent in nature. An emerging genomic toolset, which has been most comprehensively harnessed in the reconstruction of human evolutionary history, enables molecular ecologists to elucidate complex population histories. Killer whales have limited extrinsic barriers to dispersal and have radiated globally, and are therefore a good candidate model for the application of such tools. Here, we analyse a global data set of killer whale genomes in a rare attempt to elucidate global population structure in a nonhuman species. We identify a pattern of genetic homogenisation at lower latitudes and the greatest differentiation at high latitudes, even between currently sympatric lineages. The processes underlying the major axis of structure include high drift at the edge of species' range, likely associated with founder effects and allelic surfing during postglacial range expansion. Divergence between Antarctic and non‐Antarctic lineages is further driven by ancestry segments with up to fourfold older coalescence time than the genome‐wide average; relicts of a previous vicariance during an earlier glacial cycle. Our study further underpins that episodic gene flow is ubiquitous in natural populations, and can occur across great distances and after substantial periods of isolation between populations. Thus, understanding the evolutionary history of a species requires comprehensive geographic sampling and genome‐wide data to sample the variation in ancestry within individuals

    Valorisation of agricultural biomass‑ash with CO2

    Get PDF
    This work is part of a study of different types of plant-based biomass to elucidate their capacity for valorisation via a managed carbonation step involving gaseous carbon dioxide (co2). the perspectives for broader biomass waste valorisation was reviewed, followed by a proposed closed‑loop process for the valorisation of wood in earlier works. the present work newly focusses on combining agricultural biomass with mineralised co2. Here, the reactivity of selected agricultural biomass ashes with co2 and their ability to be bound by mineralised carbonate in a hardened product is examined. three categories of agricultural biomass residues, including shell, fibre and soft peel, were incinerated at 900 ± 25 °C. The biomass ashes were moistened (10% w/w) and moulded into cylindrical samples and exposed to 100% CO2 gas at 50% RH for 24 h, during which they cemented into hardened monolithic products. the calcia in ashes formed a negative relationship with ash yield and the microstructure of the carbonate‑cementing phase was distinct and related to the particular biomass feedstock. this work shows that in common with woody biomass residues, carbonated agricultural biomass ash‑based monoliths have potential as novel low‑carbon construction products

    Food supply and bioenergy production within the global cropland planetary boundary

    Get PDF
    Supplying food for the anticipated global population of over 9 billion in 2050 under changing climate conditions is one of the major challenges of the 21st century. Agricultural expansion and intensification contributes to global environmental change and risks the long-term sustainability of the planet. It has been proposed that no more than 15% of the global ice-free land surface should be converted to cropland. Bioenergy production for land-based climate mitigation places additional pressure on limited land resources. Here we test normative targets of food supply and bioenergy production within the cropland planetary boundary using a global land-use model. The results suggest supplying the global population with adequate food is possible without cropland expansion exceeding the planetary boundary. Yet this requires an increase in food production, especially in developing countries, as well as a decrease in global crop yield gaps. However, under current assumptions of future food requirements, it was not possible to also produce significant amounts of first generation bioenergy without cropland expansion. These results suggest that meeting food and bioenergy demands within the planetary boundaries would need a shift away from current trends, for example, requiring major change in the demand-side of the food system or advancing biotechnologies
    • 

    corecore